On Closed Quasi Principally Injective Acts over Monoids

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the U-WPF Acts over Monoids

Valdis Laan in [5] introduced an extension of strong flatness which is called weak pullback flatness. In this paper we introduce a new property of acts over monoids, called U-WPF which is an extension of weak pullback flatness and give a classification of monoids by this property of their acts and also a classification of monoids when this property of acts implies others. We also show that regu...

متن کامل

-torsion free Acts Over Monoids

In this paper firt of all we introduce a generalization of torsion freeness of acts over monoids, called -torsion freeness. Then in section 1 of results we give some general properties and in sections 2, 3 and 4 we give a characterization of monoids for which this property of their right Rees factor, cyclic and acts in general  implies some other properties, respectively.

متن کامل

Generalizations of principally quasi-injective modules and quasiprincipally injective modules

LetR be a ring andM a rightR-module with S= End(MR). The moduleM is called almost principally quasi-injective (or APQ-injective for short) if, for any m∈M, there exists an S-submodule Xm of M such that lMrR(m) = Sm ⊕ Xm. The module M is called almost quasiprincipally injective (or AQP-injective for short) if, for any s∈ S, there exists a left ideal Xs of S such that lS(ker(s)) = Ss ⊕ Xs. In thi...

متن کامل

-torsion free acts over monoids

in this paper firt of all we introduce a generalization of torsion freeness of acts over monoids, called -torsion freeness. then in section 1 of results we give some general properties and in sections 2, 3 and 4 we give a characterization of monoids for which this property of their right rees factor, cyclic and acts in general  implies some other properties, respectively.

متن کامل

on the u-wpf acts over monoids

valdis laan in [5] introduced an extension of strong flatness which is called weak pullback flatness. in this paper we introduce a new property of acts over monoids, called u-wpf which is an extension of weak pullback flatness and give a classification of monoids by this property of their acts and also a classification of monoids when this property of acts implies others. we also show that regu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Iraqi Journal of Science

سال: 2021

ISSN: 2312-1637,0067-2904

DOI: 10.24996/ijs.2021.62.4.24